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Quasiclassical picture of pA collisions

Kinematic regime: x<<1, α<<1
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The dipole-nucleus cross section

Quasiclassical-approximation:
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High parton density

Non-linear evolution 
regime
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Balitski, Kovchegov

Effective theory of high parton density QCD is “Color Glass 
Condensate”. JIMWLK

The saturation scale
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Geometric scaling in nuclei

Scaling of DIS cross 
section with Q/Qs is 
the direct signal of 
high parton density.

Stasto, Golec-Biernat, Kwiecinski
Armesto, Salgado, Wiedemann
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 Gluon Production

Gluon interaction with 
the nucleus is 
instanteneous:
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A
Kovchegov, A. Mueller; Kovchegov, KT

where

is unintegrated gluon distribution function
see also Dumitru, McLerran
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kT-factorization
In spite of explicit factorization breaking by each individual 
diagram, their sum can be factorized. (Kovchegov, KT) AGK rules?

Factorized gluon 
distribution

Weizsäcker-Williams 
gluon distribution

No gauge is known in which the factorization would be 
explicit. 

(Levin, Ryskin)
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x α2

sA
1/3 αs ln(1/x)

CGC vs shadowing models

it’s all about parameters

How small is 
x? Is lc>>RA ?

Is A large enough
 to make higher 
twist effects
 important?

Is x small enough 
to generate quantum 

evolution?

CGC resums higher twists and evolution logarithms at x<<1. 
Requires modeling to match onto x~1, Q→∞ physics.

Shadowing models take into account only one high parton 
density effect at a time but match well onto x~1, Q→∞.  



Hadron multiplicities in dAu at 
RHIC

Total multiplicities (Kharzeev, Levin, Nardi)

BRAHMS PHOBOS9



Multiplicity by other models

by PHOBOS



Pseudo-rapidity asymmetry 

by STAR



Hadron spectra in dAu
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Hadron spectra in dAu

Kharzeev,
Kovchegov,

KT
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Physics behind Cronin and suppression

In a quasi-classical approximation Cronin 
enhancement appears due to multiple rescattering 
of partons in nucleus. 

Shadowing:
small k, small x

Anti-
Shadowing

Most gluons are here

Gluons are redistributed from low to high kT

see also
Baier, Kovner, 
Wiedamann;
Blaizot, Gelis, 
Venugopalan;

Iancu, Itakura, 
Triantafyllopoulos

Kharzeev, 
Kovchegov, KT
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φ(k, y) ∼

(
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s
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)γ

γ ≈
1
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⇒ φ ∝ A1/6

instead of A1/3

Physics behind Cronin and suppression

Due to the non-linear evolution effects at high 
energies/forward rapidities (low x) gluons in dA get 
stronger suppressed than in pp.

Kharzeev, Levin, McLerran

Kharzeev, 
Kovchegov, 

KT

see also
Baier, Kovner, 
Wiedamann;
Blaizot, Gelis, 
Venugopalan;

Iancu, Itakura, 
Triantafyllopoulos



Other models

Gyulassy, 
Vitev, Wang, 

Zhang



Fragmentation effect?

Fragmentation 
effect due to large 
x1 does not depend 
on energy while the 
saturation effect 

does ⇒
Increase dAu 

energy to verify

Kopeliovich et al
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pA at LHC

Midrapidity at LHC looks similar to y≈3 at RHIC.
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Heavy Quark Production in pA 
collisions
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 For charm at RHIC

 At forward rapidity
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Initial vs final state interactions



Initial vs final state interactions
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approximation:

see also 
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Single inclusive quark x-section

Size of the initial dipole

Number of dipoles in proton
Total rapidity Quark rapidity

qq wave functions for different
time orderings Rescattering factors

p
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q

see also Blaizot, 

Gelis, Venugopalan 

KT;
Kovchegov, KT
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Aligned jet configuration

Assume that quark energy >> anti-quark energy

Then,

Gluon emission and pair production factorize: the 
light cone wave function = ψG⊗ψqq

Although the quark production x-section is quite 
simple in this case (only 7-dim integral :) it applies 
only in the situation when q and anti-q are 
separated by large rapidity gap.

Exact result: see Kovchegov, KT, 06

lc(G) ! lc(qq̄) ! RA

KT
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kT-factorization

kT-factorization assumes that qq production 
process can be factorized out from the 
wave functions of proton and nucleus

Levin, Ryskin, Shabelsky, Shuvaev,
Catani, Ciafaloni, Hautmann,
Collins, Ellis                 All:1991

It was proved for single inclusive gluon 
production in pA (Kovchegov, K.T.);

p

A

q1

q2

Cross section is much easier to calculate
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How good is kT-factorization?

Ratio of the BGV result to the kT-factorization:

Fujii, Gelis, Venugopalan
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Application to RHIC phenomenology 

A model based on kT-factorization 

η=0

η=2

AA

η=0

η=2

pA

Kharzeev, KT

Suppression onsets when Qs>m. Production pattern 
of light and heavy quarks becomes the same. 



Preliminary

Data from PHENIX

Presented by R. Averbeck at RHIC & 
AGC Users’ Meeting

Both suppression at 
forward rapidity and 
enhancement at 
backward one are 
consistent with CGC.
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Heavy Quark Spectrum 

courtesy by R. Venugopalan



ψJ/

ψJ/

ψJ/

J/ψ production Kharzeev and KT

PP pd

pA
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Azimuthal correlations

Azimuthal correlations due to CGC are different from 
pQCD: they are depleted since the classical fields 
commute. Prediction (Kharzeev, Levin, McLerran): 
suppression of back-to-back correlation at low x.

more details
in the talk by 
Alex Kovner



Azimuthal correlations
at forward rapidity:

Exact calculation of the double inclusive gluon production see 
Jalilian-Marian, Kovchegov.

backward-forward correlations:

see also Baier, Kovner, Nardi, Wiedemann



by STAR

Back-to-back correlations
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from HIJING

Back-to-back correlations
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Azimuthal correlations in AuAu, dAu and pp 

STAR 
Preliminary

dAu (“some flow”)

pp
(nonflow)

AuAu (flow + non-flow)

At high pt in
central
collisions,
azimuthal
correlation in
AuAu could
be dominated
by nonflow.

v2·Mult.

by Tang (STAR)
There is a significant “flow” component in dA and pp at large pT 

(Kovchegov, KT) 



Di-lepton production
Advantages of di-leptons:

no need to know the fragmentation functions;

do not strongly interact. 

Kopeliovich, Schafer, 
Tarasov, (photons*);

Jalilian-Marian;
Baier, Mueller, Schiff

RdA(M) integrated over transverse 
momenta of lepton pair (Jalilian-Marian)

RdA(A) at kT=5 GeV, M=2 and y=3 
(Baier, Mueller, Schiff)



Summary: signatures of CGC in p(d)A

Hadron spectra and multiplicities ✔

Heavy quark spectra and multiplicities ✔ (preliminary)

J/ψ ±

Correlations ±

Di-leptons ?

Energy dependence - LHC.

37


